Funded by

Exact verification of the strong BSD conjecture for some absolutely simple RM abelian surfaces see arXiv:2107.00325 and forthcoming articles

Timo Keller

joint with Michael Stoll

Universität Hannover (previously Universität Bayreuth)

July 21, 2022 PCMI Research Program "Number Theory informed by Computation"

The BSD conjecture: Why is it useful?

Fundamental problems

Let A be an abelian variety over \mathbf{Q} .

Problem 1

Compute $r := \operatorname{rk} A(\mathbf{Q})$, the *algebraic rank*.

For every n > 1, there is an *n*-descent exact sequence

$$0 \to A(\mathbf{Q})/n \to \operatorname{Sel}_n(A/\mathbf{Q}) \to \operatorname{III}(A/\mathbf{Q})[n] \to 0$$

with the *n*-Selmer group $Sel_n(A/\mathbf{Q})$ finite (and computable in principle).

Problem 2

Compute $III(A/\mathbf{Q})$, the *Shafarevich–Tate group*.

Fundamental problems

Let A be an abelian variety over \mathbf{Q} .

Problem 1

Compute $r := \operatorname{rk} A(\mathbf{Q})$, the *algebraic rank*.

For every n > 1, there is an *n*-descent exact sequence

$$0 \to A(\mathbf{Q})/n \to \operatorname{Sel}_n(A/\mathbf{Q}) \to \operatorname{III}(A/\mathbf{Q})[n] \to 0$$

with the *n*-Selmer group $Sel_n(A/\mathbf{Q})$ finite (and computable in principle).

Problem 2

Compute $III(A/\mathbf{Q})$, the *Shafarevich–Tate group*.

Statement of the BSD conjecture

Birch-Swinnerton-Dyer (rank) conjecture

 $r = r_{an} := \operatorname{ord}_{s=1} L(A, s)$

For A = E an elliptic curve:

- r_{an} well-defined by modularity of E/\mathbf{Q} .
- ▶ Yields "day-night algorithm" to compute *r* and hence *E*(**Q**).
- Formulated based on computations in 1965.
- Proven if $r_{an} \leq 1$.

strong BSD conjecture

$$# \amalg(A/\mathbf{Q}) = # \amalg(A/\mathbf{Q})_{an} := \frac{#A(\mathbf{Q})_{tors} \cdot #A^{\vee}(\mathbf{Q})_{tors}}{\prod_p c_p} \cdot \frac{L^*(A, 1)}{\Omega_A \operatorname{Reg}_A}$$

Compare with the analytic class number formula!

Statement of the BSD conjecture

Birch-Swinnerton-Dyer (rank) conjecture

 $r = r_{an} := \operatorname{ord}_{s=1} L(A, s)$

For A = E an elliptic curve:

- r_{an} well-defined by modularity of E/\mathbf{Q} .
- ▶ Yields "day-night algorithm" to compute *r* and hence *E*(**Q**).
- Formulated based on computations in 1965.
- Proven if $r_{an} \leq 1$.

strong BSD conjecture

$$# \amalg(A/\mathbf{Q}) = # \amalg(A/\mathbf{Q})_{\mathrm{an}} := \frac{#A(\mathbf{Q})_{\mathrm{tors}} \cdot #A^{\vee}(\mathbf{Q})_{\mathrm{tors}}}{\prod_p c_p} \cdot \frac{L^*(A, 1)}{\Omega_A \operatorname{Reg}_A}$$

Compare with the analytic class number formula!

What are applications of the strong BSD conjecture?

Problem

Let C/\mathbf{Q} be a curve of genus 1. Decide: $C(\mathbf{Q}) = \emptyset$? $\#C(\mathbf{Q}) = \infty$?

- Compute elliptic curve E/\mathbf{Q} such that $[C] \in \mathrm{III}(E/\mathbf{Q})$.
- ▶ If one can decide $C(\mathbf{Q}) \neq \emptyset$, one can decide $\#C(\mathbf{Q}) = \infty$ by deciding L(E, 1) = 0 (BSD rank conjecture).
- Compute $\#III(E/\mathbf{Q})$ using strong BSD.
- Enumerate representatives of $III(E/\mathbf{Q})$.
- Use the perfect Cassels–Tate pairing

 $\langle \cdot, \cdot \rangle : \mathrm{III}(E/\mathbf{Q}) \times \mathrm{III}(E/\mathbf{Q}) \to \mathbf{Q}/\mathbf{Z}$

to decide existence of $[D] \in \text{III}(E/\mathbb{Q})$ with $\langle [C], [D] \rangle \neq 0$.

The BSD conjecture: What is known?

What is already known about (strong) BSD?

Let *A* be a RM abelian variety over \mathbf{Q} with associated newform *f*.

- Assume that $\operatorname{ord}_{s=1} L(f, s) \in \{0, 1\}$ (hence $r_{an} \in \{0, \dim A\}$).
- This implies by combining the Gross–Zagier formula with the Heegner point Euler system of Kolyvagin–Logachëv:

 $r = r_{an}$, (BSD rank conjecture) #III $(A/\mathbf{Q}) < \infty$, #III $(A/\mathbf{Q})_{an} \in \mathbf{Q}_{>0}$.

What is already known about (strong) BSD?

Let *A* be a RM abelian variety over \mathbf{Q} with associated newform *f*.

- Assume that $\operatorname{ord}_{s=1} L(f, s) \in \{0, 1\}$ (hence $r_{an} \in \{0, \dim A\}$).
- This implies by combining the Gross–Zagier formula with the Heegner point Euler system of Kolyvagin–Logachëv:

 $r = r_{an}$, (BSD rank conjecture) #III $(A/\mathbf{Q}) < \infty$, #III $(A/\mathbf{Q})_{an} \in \mathbf{Q}_{>0}$.

• Unknown: $\#III(A/\mathbf{Q}) \stackrel{?}{=} \#III(A/\mathbf{Q})_{an}$ (strong BSD)

What is already known about (strong) BSD?

Let *A* be a RM abelian variety over \mathbf{Q} with associated newform *f*.

- Assume that $\operatorname{ord}_{s=1} L(f, s) \in \{0, 1\}$ (hence $r_{an} \in \{0, \dim A\}$).
- This implies by combining the Gross–Zagier formula with the Heegner point Euler system of Kolyvagin–Logachëv:

 $r = r_{an}$, (BSD rank conjecture) # $III(A/\mathbf{Q}) < \infty$, # $III(A/\mathbf{Q})_{an} \in \mathbf{Q}_{>0}$.

• Unknown: $\#III(A/\mathbf{Q}) \stackrel{?}{=} \#III(A/\mathbf{Q})_{an}$ (strong BSD)

In which cases has strong BSD been verified?

- For elliptic curves with $r_{an} \leq 1$:
 - Strong BSD verified exactly for levels N < 5000 combining work of GRIGOROV-JORZA-PATRIKIS-STEIN-TARNIŢĂ (2009), MILLER (2011), MILLER-STOLL (2013, isogeny descent), CREUTZ-MILLER (2012, second isogeny descent), LAWSON-WUTHRICH (2016, use of *p*-adic *L*-functions).

► For RM abelian varieties of dimension > 1:

- FLYNN-LEPRÉVOST-SCHAEFER-STEIN-STOLL-WETHERELL (2001): BSD for some Jacobians of dimension 2 numerically.
- VAN BOMMEL (2019): BSD for some hyperelliptic Jacobians numerically up to squares.

In which cases has strong BSD been verified?

- For elliptic curves with $r_{an} \leq 1$:
 - Strong BSD verified exactly for levels N < 5000 combining work of GRIGOROV-JORZA-PATRIKIS-STEIN-TARNIŢĂ (2009), MILLER (2011), MILLER-STOLL (2013, isogeny descent), CREUTZ-MILLER (2012, second isogeny descent), LAWSON-WUTHRICH (2016, use of *p*-adic *L*-functions).
- For RM abelian varieties of dimension > 1:
 - FLYNN-LEPRÉVOST-SCHAEFER-STEIN-STOLL-WETHERELL (2001): BSD for some Jacobians of dimension 2 numerically.
 - VAN BOMMEL (2019): BSD for some hyperelliptic Jacobians numerically up to squares.
 - SKINNER-URBAN (2014): GL₂ Iwasawa Main Conjecture (IMC) for primes *p* of good ordinary reduction and ρ_p irreducible.
 - SKINNER (2016): GL₂ IMC for primes p of bad multiplicative reduction and ρ_p irreducible.
 - CASTELLA-ÇIPERIANI-SKINNER-SPRUNG (2019, preprint): $v_p(\#III(A/\mathbf{Q})) = v_p(\#III(A/\mathbf{Q})_{an})$ if *N* is square-free, $p \nmid N$, and ρ_p irreducible.

In which cases has strong BSD been verified?

- For elliptic curves with $r_{an} \leq 1$:
 - Strong BSD verified exactly for levels N < 5000 combining work of GRIGOROV-JORZA-PATRIKIS-STEIN-TARNIŢĂ (2009), MILLER (2011), MILLER-STOLL (2013, isogeny descent), CREUTZ-MILLER (2012, second isogeny descent), LAWSON-WUTHRICH (2016, use of *p*-adic *L*-functions).
- For RM abelian varieties of dimension > 1:
 - FLYNN-LEPRÉVOST-SCHAEFER-STEIN-STOLL-WETHERELL (2001): BSD for some Jacobians of dimension 2 numerically.
 - VAN BOMMEL (2019): BSD for some hyperelliptic Jacobians numerically up to squares.
 - SKINNER–URBAN (2014): GL₂ Iwasawa Main Conjecture (IMC) for primes *p* of good ordinary reduction and *ρ_p* irreducible.
 - SKINNER (2016): GL₂ IMC for primes *p* of bad multiplicative reduction and ρ_p irreducible.
 - CASTELLA-ÇIPERIANI-SKINNER-SPRUNG (2019, preprint): $v_p(\#\amalg(A/\mathbf{Q})) = v_p(\#\amalg(A/\mathbf{Q})_{an})$ if *N* is square-free, $p \nmid N$, and ρ_p irreducible.

What are our new results in dimension 2?

How to bound $\#III(A/\mathbf{Q})$?

There are two reasons why III(A) could be infinite:

- "horizonal": $III(A)[p] \neq 0$ for infinitely many p.
- ▶ "vertical": $III(A)[p^{\infty}] \cong F \oplus (\mathbf{Q}_p/\mathbf{Z}_p)^n$ infinite for one p.

Solution to the "horizontal" problem:

Theorem (K.): explicit Euler system of Kolyvagin–Logachëv

Let *A* be a RM abelian variety over **Q**. Denote $O := \text{End}_{\mathbf{Q}}(A)$. One has $\operatorname{III}(A/\mathbf{Q})[\mathfrak{p}] = 0$ for all \mathfrak{p} with

- ▶ $\rho_{\mathfrak{p}}$: $Gal(\overline{\mathbf{Q}}|\mathbf{Q}) \rightarrow Aut_{F_{\mathfrak{p}}}(A[\mathfrak{p}](\overline{\mathbf{Q}}))$ irreducible and
- ▶ $p \nmid 2 \cdot c \cdot \text{gcd}_K(I_K)$ with Heegner indices I_K and the Tamagawa product *c* (both can be refined to *O*-ideals).

How to bound $\#III(A/\mathbf{Q})$?

There are two reasons why III(A) could be infinite:

- "horizonal": $III(A)[p] \neq 0$ for infinitely many p.
- ▶ "vertical": $\amalg(A)[p^{\infty}] \cong F \oplus (\mathbf{Q}_p/\mathbf{Z}_p)^n$ infinite for one p.

Solution to the "horizontal" problem:

Theorem (K.): explicit Euler system of Kolyvagin–Logachëv

Let *A* be a RM abelian variety over **Q**. Denote $O := \text{End}_{\mathbf{Q}}(A)$. One has $\text{III}(A/\mathbf{Q})[\mathfrak{p}] = 0$ for all \mathfrak{p} with

- ▶ $\rho_{\mathfrak{p}}$: Gal($\overline{\mathbf{Q}}|\mathbf{Q}$) → Aut_{F_p}($A[\mathfrak{p}](\overline{\mathbf{Q}})$) irreducible and
- ▶ $p \nmid 2 \cdot c \cdot \text{gcd}_K(I_K)$ with Heegner indices I_K and the Tamagawa product c (both can be refined to O-ideals).
- These p are explicitly computable and cover almost all p.
- ▶ In fact, $\mathfrak{p}^{2 \operatorname{ord}_{\mathfrak{p}} I_{K}} \operatorname{III}(A/\mathbf{Q})[\mathfrak{p}^{\infty}] = 0$ if $\rho_{\mathfrak{p}}$ irreducible and $\mathfrak{p} \nmid 2c$.
- We also have an explicit bound on $\operatorname{III}(A/\mathbb{Q})[\mathfrak{p}^{\infty}]$ for all \mathfrak{p} .

How to bound $\#III(A/\mathbf{Q})$?

There are two reasons why III(A) could be infinite:

- "horizonal": $III(A)[p] \neq 0$ for infinitely many p.
- ▶ "vertical": $\amalg(A)[p^{\infty}] \cong F \oplus (\mathbf{Q}_p/\mathbf{Z}_p)^n$ infinite for one p.

Solution to the "horizontal" problem:

Theorem (K.): explicit Euler system of Kolyvagin–Logachëv

Let *A* be a RM abelian variety over **Q**. Denote $O := \text{End}_{\mathbf{Q}}(A)$. One has $\text{III}(A/\mathbf{Q})[\mathfrak{p}] = 0$ for all \mathfrak{p} with

- ▶ $\rho_{\mathfrak{p}}$: Gal($\overline{\mathbf{Q}}|\mathbf{Q}$) → Aut_{F_p}($A[\mathfrak{p}](\overline{\mathbf{Q}})$) irreducible and
- ▶ $p \nmid 2 \cdot c \cdot \text{gcd}_K(I_K)$ with Heegner indices I_K and the Tamagawa product c (both can be refined to O-ideals).
- These p are explicitly computable and cover almost all p.
- ▶ In fact, $\mathfrak{p}^{2 \operatorname{ord}_{\mathfrak{p}} I_{K}} \operatorname{III}(A/\mathbf{Q})[\mathfrak{p}^{\infty}] = 0$ if $\rho_{\mathfrak{p}}$ irreducible and $\mathfrak{p} \nmid 2c$.
- We also have an explicit bound on $\operatorname{III}(A/\mathbb{Q})[\mathfrak{p}^{\infty}]$ for all \mathfrak{p} .

What are the main obstacles in dimension > 1?

Problems when dim A > 1 (necessary input for Euler system)

- We don't have an analog of Mazur's classification of rational isogenies of prime degree for all A: moduli spaces have dimension > 1.
- We have to compute Heegner points.

We solve the problems for concretely given A = Jac(C).

What are the main obstacles in dimension > 1?

Problems when dim A > 1 (necessary input for Euler system)

- We don't have an analog of Mazur's classification of rational isogenies of prime degree for all A: moduli spaces have dimension > 1.
- We have to compute Heegner points.

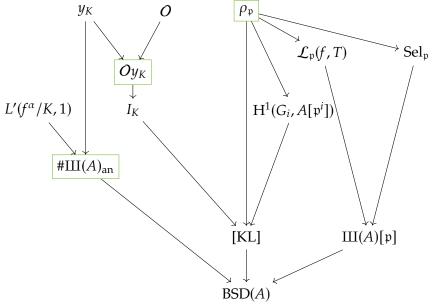
We solve the problems for concretely given A = Jac(C).

How to compute the remaining $\operatorname{III}(A/\mathbf{Q})[\mathfrak{p}^{\infty}]$?

Two tools:

- Perform a p^n -descent to compute $\operatorname{Sel}_{p^n}(A/\mathbf{Q})$.
 - Works very well if ρ_{p^n} is reducible.
 - Works for general p^{*n*} in principle, but:
 - Infeasible if $\rho_{\mathfrak{p}^n}$ has large image, e.g., $\#O/\mathfrak{p}^n > 7$ and $\rho_{\mathfrak{p}^n}$ irreducible, even assuming GRH.
- ▶ Compute the p-adic *L*-function and use the GL₂ IMC.
 - Can be computed very efficiently with overconvergent modular symbols using the POLLACK-STEVENS-GREENBERG algorithm.
 - Requires $\rho_{\mathfrak{p}}$ to be irreducible.
 - (But: work in progress joint with CASTELLA)
 - Unclear for good non-ordinary and especially bad non-multiplicative reduction.
 - Requires the computation of the p-adic regulator if r_{an} > 0 or if the reduction is split multiplicative. (work in progress by KAYA-MÜLLER-VAN DER PUT)

How do we verify the conjecture?



Sketch of proofs

Almost all $\rho_{\mathfrak{p}}$ are irreducible

Theorem (K.)

Assume $v_p(N) \leq 1$. If ρ_p is reducible, $\rho_p^{ss} \cong \varepsilon \oplus \varepsilon^{-1} \chi_p$ with ε of conductor d with $d^2 | N$. Hence: If ρ_p is reducible as an \mathbf{F}_p -representation, then

an eigenvalue of $\rho_{\mathfrak{p}}(\operatorname{Frob}_{\ell})$ has order dividing $\operatorname{ord}(\overline{\ell} \in (\mathbb{Z}/d)^{\times})$.

Hence:

for *d* maximal with $d^2 \mid N$.

Almost all $\rho_{\mathfrak{p}}$ are irreducible

Theorem (K.)

Assume $v_p(N) \leq 1$. If ρ_p is reducible, $\rho_p^{ss} \cong \varepsilon \oplus \varepsilon^{-1} \chi_p$ with ε of conductor d with $d^2 | N$. Hence: If ρ_p is reducible as an \mathbf{F}_p -representation, then

an eigenvalue of $\rho_{\mathfrak{p}}(\operatorname{Frob}_{\ell})$ has order dividing $\operatorname{ord}(\overline{\ell} \in (\mathbb{Z}/d)^{\times})$.

Hence:

 $\mathfrak{p} \mid \operatorname{res}_{O[X]} \big(\operatorname{charpol}_{O[X]}(\rho_{\mathfrak{p}^{\infty}}(\operatorname{Frob}_{\ell})), X^{\operatorname{ord}(\overline{\ell} \in (\mathbb{Z}/d)^{\times})} - 1 \big).$

for *d* maximal with $d^2 \mid N$.

Almost all $\rho_{\mathfrak{p}}$ are irreducible

Theorem (K.)

Assume $v_p(N) \leq 1$. If ρ_p is reducible, $\rho_p^{ss} \cong \varepsilon \oplus \varepsilon^{-1} \chi_p$ with ε of conductor d with $d^2 | N$. Hence: If ρ_p is reducible as an \mathbf{F}_p -representation, then

an eigenvalue of $\rho_{\mathfrak{p}}(\operatorname{Frob}_{\ell})$ has order dividing $\operatorname{ord}(\overline{\ell} \in (\mathbb{Z}/d)^{\times})$.

Hence:

$$\mathfrak{p} \mid \gcd_{\ell \nmid pN} \Big(\operatorname{res}_{\mathcal{O}[X]} \big(\operatorname{charpol}_{\mathcal{O}[X]}(\rho_{\mathfrak{p}^{\infty}}(\operatorname{Frob}_{\ell})), X^{\operatorname{ord}(\overline{\ell} \in (\mathbb{Z}/d)^{\times})} - 1 \big) \Big).$$

for *d* maximal with $d^2 \mid N$.

- We can also treat the case $p^2 | N$.
- We can also do maximal image.
- ▶ Have upper bound on *p* depending on *N*.

Computing (a multiple of) the Heegner index I_K

Let J = Jac(X). There is an isogeny $\pi : J_0(N)/\text{Ann}_{\mathbf{T}}(f) =: A_f \to J$. Let K be a Heegner field for J.

$$A_f(K) \longleftrightarrow A_f(\mathbf{C}) \xrightarrow{\sim} \mathbf{C}^g / \Lambda_f$$

$$\downarrow \qquad \qquad \downarrow^{\pi}$$

$$J(K) \longleftrightarrow J(\mathbf{C}) \xrightarrow{\sim} \mathbf{C}^g / \Lambda$$

- 1. Complex approximation of $y_K \in \mathbb{C}^g / \Lambda_f$ using integrals.
- 2. Compute the image of y_K under the isogeny $\pi : \mathbb{C}^g / \Lambda_f \to \mathbb{C}^g / \Lambda$.
- 3. Invert the Abel–Jacobi map $J(\mathbf{C}) \xrightarrow{\sim} \mathbf{C}^g / \Lambda$ using theta functions.
- 4. Approximate the Mumford representation in J(K).
- 5. Prove correctness using $\hat{h}(y_K)$ from Gross–Zagier (reconstruct \hat{h}_{ϑ} on J(K) from \hat{h}_{ι} on A_f with respect to isogeny $\iota : A_f^{\vee} \to A_f$).

Note that we use *X* hyperelliptic in steps 3 and 4.

How to compute $\#\amalg(A/\mathbf{Q})_{an}$ exactly?

- ► Compute $\frac{L(f,1)}{\Omega_f^+} \in \mathbf{Q}(f)$ exactly using modular symbols and Balakrishnan-Müller-Stein and VAN BOMMEL's code to compute Ω_A .
- If L(A, 1) ≠ 0, this gives #III(A/Q)_{an} ∈ Q_{>0} exactly.
 If L(A, 1) = 0:
 - Choose a Heegner field *K* and compute $\frac{L(f_K, 1)}{\text{Reg}_{A/K}\Omega_{A/K}} \in \mathbb{Q}_{>0}$ exactly using Gross–Zagier, and hence compute $\#\text{III}(A/K)_{an} \in \mathbb{Q}_{>0}$.
 - Compute $\# III(A^K/\mathbf{Q})_{an} \in \mathbf{Q}_{>0}$ exactly.
 - Use #III $(A/K)_{an} = \#$ III $(A/Q)_{an} \cdot \#$ III $(A^K/Q)_{an}$ up to powers of 2 that can be explicitly bounded to compute #III $(A/Q)_{an} \in Q_{>0}$ exactly.

How to compute $\#\amalg(A/\mathbf{Q})_{an}$ exactly?

- ► Compute $\frac{L(f,1)}{\Omega_f^+} \in \mathbf{Q}(f)$ exactly using modular symbols and Balakrishnan-Müller-Stein and van Bommel's code to compute Ω_A .
- If L(A, 1) ≠ 0, this gives #III(A/Q)_{an} ∈ Q_{>0} exactly.
 If L(A, 1) = 0:
 - Choose a Heegner field *K* and compute $\frac{L(f_K,1)}{\text{Reg}_{A/K}\Omega_{A/K}} \in \mathbf{Q}_{>0}$ exactly using Gross–Zagier, and hence compute $\# \coprod (A/K)_{an} \in \mathbf{Q}_{>0}$.
 - Compute $\# \coprod (A^{\tilde{k}}/\mathbf{Q})_{an} \in \mathbf{Q}_{>0}$ exactly.
 - Use #III $(A/K)_{an} = \#$ III $(A/\mathbf{Q})_{an} \cdot \#$ III $(A^K/\mathbf{Q})_{an}$ up to powers of 2 that can be explicitly bounded to compute #III $(A/\mathbf{Q})_{an} \in \mathbf{Q}_{>0}$ exactly.

Examples in dimension 2

- $\triangleright O = \mathbf{Z}[\sqrt{2}]$
- $\blacktriangleright r = r_{an} = 0$
- ► $#III(A/\mathbf{Q})_{an} = 1$
- $\blacktriangleright A(\mathbf{Q}) = A(\mathbf{Q})_{\text{tors}} \cong \mathbf{Z}/2 \times \mathbf{Z}/(2 \cdot 7)$
- *ρ*_p is reducible exactly for p = (√2) and exactly one pp
 = 7.
 c = 7
- ▶ [KL] with $I_{\mathbb{Q}(\sqrt{-23})} = 7$ gives $\# \amalg(A/\mathbb{Q})[\mathfrak{p}] = 0$ for $\mathfrak{p} \nmid (\sqrt{2}), 7$.

- $\blacktriangleright O = \mathbf{Z}\left[\sqrt{2}\right]$
- $\blacktriangleright r = r_{an} = 0$
- ► $#III(A/\mathbf{Q})_{an} = 1$
- $A(\mathbf{Q}) = A(\mathbf{Q})_{\text{tors}} \cong \mathbf{Z}/2 \times \mathbf{Z}/(2 \cdot 7)$
- *ρ*_p is reducible exactly for p = (√2) and exactly one pp
 = 7.
 c = 7
- [KL] with I_{Q(√-23)} = 7 gives #III(A/Q)[p] = 0 for p ∤ (√2), 7.
 Sel₂(A/Q) ≅ (Z/2)² ≅ A(Q)/2 gives III(A/Q)[2] = 0.

- $\blacktriangleright O = \mathbf{Z}\left[\sqrt{2}\right]$
- $r = r_{an} = 0$
- ► $#III(A/\mathbf{Q})_{an} = 1$
- $A(\mathbf{Q}) = A(\mathbf{Q})_{\text{tors}} \cong \mathbf{Z}/2 \times \mathbf{Z}/(2 \cdot 7)$
- *ρ*_p is reducible exactly for p = (√2) and exactly one pp
 = 7.
 c = 7
- ► [KL] with $I_{\mathbf{Q}(\sqrt{-23})} = 7$ gives $\# \operatorname{III}(A/\mathbf{Q})[\mathfrak{p}] = 0$ for $\mathfrak{p} \nmid (\sqrt{2}), 7$.
- Sel₂(A/\mathbf{Q}) \cong ($\mathbf{Z}/2$)² \cong $A(\mathbf{Q})/2$ gives $\operatorname{III}(A/\mathbf{Q})[2] = 0$.
- $\rho_{\mathfrak{p}}$ is reducible with

$$0 \to \mathbb{Z}/7 \to A[\mathfrak{p}] \to \mu_7 \to 1$$

non-split exact, and $\operatorname{Sel}_{\mathfrak{p}}(A/\mathbb{Q}) \cong \mathbb{Z}/7 \cong A(\mathbb{Q})[7]$ by descent. Hence $\operatorname{III}(A/\mathbb{Q})[\mathfrak{p}] = 0$.

- $\blacktriangleright O = \mathbf{Z}\left[\sqrt{2}\right]$
- $r = r_{an} = 0$
- $\blacksquare \# \amalg (A/\mathbf{Q})_{an} = 1$
- $A(\mathbf{Q}) = A(\mathbf{Q})_{\text{tors}} \cong \mathbf{Z}/2 \times \mathbf{Z}/(2 \cdot 7)$
- *ρ*_p is reducible exactly for p = (√2) and exactly one pp
 = 7.
 c = 7
- ► [KL] with $I_{\mathbf{Q}(\sqrt{-23})} = 7$ gives $\# \amalg(A/\mathbf{Q})[\mathfrak{p}] = 0$ for $\mathfrak{p} \nmid (\sqrt{2}), 7$.
- Sel₂(A/\mathbf{Q}) \cong ($\mathbf{Z}/2$)² \cong $A(\mathbf{Q})/2$ gives $\operatorname{III}(A/\mathbf{Q})[2] = 0$.
- $\rho_{\mathfrak{p}}$ is reducible with

$$0 \to \mathbb{Z}/7 \to A[\mathfrak{p}] \to \mu_7 \to 1$$

non-split exact, and $\operatorname{Sel}_{\mathfrak{p}}(A/\mathbb{Q}) \cong \mathbb{Z}/7 \cong A(\mathbb{Q})[7]$ by descent. Hence $\operatorname{III}(A/\mathbb{Q})[\mathfrak{p}] = 0$.

The p̄-adic *L*-function has constant term a unit in O_{p̄} ≃ Z₇, hence the integral GL₂ IMC shows Sel_{p̄}(A/Q) = 0 since ρ_{p̄} is irreducible.

- $\blacktriangleright O = \mathbf{Z}\left[\sqrt{2}\right]$
- $\blacktriangleright r = r_{an} = 0$
- $\blacktriangleright \# \operatorname{III}(A/\mathbf{Q})_{\operatorname{an}} = 1$
- $A(\mathbf{Q}) = A(\mathbf{Q})_{\text{tors}} \cong \mathbf{Z}/2 \times \mathbf{Z}/(2 \cdot 7)$
- *ρ*_p is reducible exactly for p = (√2) and exactly one pp̄ = 7.
 c = 7
- ► [KL] with $I_{\mathbf{Q}(\sqrt{-23})} = 7$ gives $\# \operatorname{III}(A/\mathbf{Q})[\mathfrak{p}] = 0$ for $\mathfrak{p} \nmid (\sqrt{2}), 7$.
- Sel₂(A/\mathbf{Q}) \cong ($\mathbf{Z}/2$)² \cong $A(\mathbf{Q})/2$ gives III(A/\mathbf{Q})[2] = 0.
- $\rho_{\mathfrak{p}}$ is reducible with

$$0 \to \mathbb{Z}/7 \to A[\mathfrak{p}] \to \mu_7 \to 1$$

non-split exact, and $\operatorname{Sel}_{\mathfrak{p}}(A/\mathbb{Q}) \cong \mathbb{Z}/7 \cong A(\mathbb{Q})[7]$ by descent. Hence $\operatorname{III}(A/\mathbb{Q})[\mathfrak{p}] = 0$.

The p
-adic L-function has constant term a unit in O<sub>p
̄</sub> ≃ Z₇, hence the integral GL₂ IMC shows Sel<sub>p
̄</sub>(A/Q) = 0 since ρ_{p̄} is irreducible.

All Atkin-Lehner quotients of genus 2 of our type (I)

X	r	0	#∭ _{an}	$\rho_{\mathfrak{p}}$ red.	С	(D, I_D)	#Ш
<i>X</i> ₀ (23)	0	$\sqrt{5}$	1	11 ₁	11	(-7, 11)	11 ⁰
$X_0(29)$	0	$\sqrt{2}$	1	7 1	7	(-7 , 7)	7 ⁰
$X_0(31)$	0	$\sqrt{5}$	1	$\sqrt{5}$	5	(-11,5)	5 ⁰
$X_0(35)/w_7$	0	$\sqrt{17}$	1	21	1	(-19,1)	1
$X_0(39)/w_{13}$	0	$\sqrt{2}$	1	$\sqrt{2}, 7_1$	7	(-23, 7)	7 ⁰
$X_0(67)^+$	2	$\sqrt{5}$	1		1	(-7,1)	1
$X_0(73)^+$	2	$\sqrt{5}$	1		1	(-19,1)	1
$X_0(85)^*$	2	$\sqrt{2}$	1	$\sqrt{2}$	1	(-19,1)	1
$X_0(87)/w_{29}$	0	$\sqrt{5}$	1	$\sqrt{5}$	5	(-23 , 5)	5 ⁰
$X_0(93)^*$	2	$\sqrt{5}$	1		1	(-11,1)	1
$X_0(103)^+$	2	$\sqrt{5}$	1		1	(-11,1)	1
$X_0(107)^+$	2	$\sqrt{5}$	1		1	(-7,1)	1
$X_0(115)^*$	2	$\sqrt{5}$	1		1	(-11,1)	1
$X_0(125)^+$	2	$\sqrt{5}$	1	$\sqrt{5}$	1	(-11, 1)	5 ⁰

All Atkin-Lehner quotients of genus 2 of our type (II)

X	r	0	#∭ _{an}	$ ho_{\mathfrak{p}}$ red.	С	(D, I_D)	#Ⅲ
X ₀ (133)*	2	$\sqrt{5}$	1		1	(-31, 1)	1
$X_0(147)^*$	2	$\sqrt{2}$	1	$\sqrt{2}, 7_1$	1	(-47, 1)	7 ⁰
$X_0(161)^*$	2	$\sqrt{5}$	1		1	(-19,1)	1
$X_0(165)^*$	2	$\sqrt{2}$	1	$\sqrt{2}$	1	(-131,1)	1
$X_0(167)^+$	2	$\sqrt{5}$	1		1	(-15,1)	1
$X_0(177)^*$	2	$\sqrt{5}$	1		1	(-11,1)	1
$X_0(191)^+$	2	$\sqrt{5}$	1		1	(-7,1)	1
$X_0(205)^*$	2	$\sqrt{5}$	1		1	(-31,1)	1
$X_0(209)^*$	2	$\sqrt{2}$	1		1	(-51, 1)	1
$X_0(213)^*$	2	$\sqrt{5}$	1		1	(-11,1)	1
$X_0(221)^*$	2	$\sqrt{5}$	1		1	(-35,1)	1
$X_0(287)^*$	2	$\sqrt{5}$	1		1	(-31,1)	1
$X_0(299)^*$	2	$\sqrt{5}$	1		1	(-43, 1)	1
$X_0(357)^*$	2	$\sqrt{2}$	1		1	(-47, 1)	1

Outlook

▶ Using Shnidman–Weiss¹, find examples of A/**Q** with

$$\#\mathrm{III}(A/\mathbf{Q}) = \#\mathrm{III}(A/\mathbf{Q})_{\mathrm{an}} \neq 2^{i}!$$

Can have $p \in \{3, 5, 7, 11, (13?), \dots, (31?), \dots\}$.

Find J/\mathbf{Q} and $\mathfrak{p} \mid p$ "large" with

■
$$p^2 | N$$
 (no *p*-adic *L*-functions),

•
$$\mathfrak{p} \mid c \cdot I_K$$
 ([KL] does not give $\operatorname{III}(J/\mathbf{Q})[\mathfrak{p}] = 0$), and

*ρ*_p irreducible (p-descent hard)!

¹Elements of prime order in Tate-Shafarevich groups of abelian varieties over \mathbb{Q} , arXiv:2106.14096

What are the next steps and projects?

- Almost done: Verification for all 97 genus 2 curves with absolutely simple RM Jacobian from the LMFDB.
- ► Verification for (almost?) all ~ 1200 newforms of level ≤ 1000 with real-quadratic coefficients foreseeable.

What are the next steps and projects?

- Almost done: Verification for all 97 genus 2 curves with absolutely simple RM Jacobian from the LMFDB.
- ► Verification for (almost?) all ~ 1200 newforms of level ≤ 1000 with real-quadratic coefficients foreseeable.
- RM abelian threefolds: A generic curve of genus 3 is non-hyperelliptic, so we need an explicit theory of Jacobians and heights.
- Strong BSD over totally real fields.

What are the next steps and projects?

- Almost done: Verification for all 97 genus 2 curves with absolutely simple RM Jacobian from the LMFDB.
- ► Verification for (almost?) all ~ 1200 newforms of level ≤ 1000 with real-quadratic coefficients foreseeable.
- RM abelian threefolds: A generic curve of genus 3 is non-hyperelliptic, so we need an explicit theory of Jacobians and heights.
- Strong BSD over totally real fields.

Thank you!