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The goal of this kleine AG is to give an introduction to stacks.

First talk. Motivation.

e Explain why there is no scheme representing the fine moduli space of elliptic curves.
( [HaMo], 2.A and |EiHa|, VI.2.4)

e Discuss possible solutions (level-n structures M, [DeRaj, I)

e Explain why one needs a suitable definition of a quotient of M,, by GL2(Z/n).

Second talk. Grothendieck topologies.

e Explain [Vi], 2.3.1-2.3.3 (2.3.2 only very rough, it suffices to cite 2.33(i), (ii) and 2.35,
2.36)

e Representable functors are fpqc sheaves 2.55

e Characterisation of representable functors |[EiHaj, Theorem VI-14.

Third talk. Fibered Categories.

e Introduce the notion of a category fibered in groupoids. See [DeMu, 4], for a more
detailed exposition look at Sections 3.1.1 and 3.3 in [Vi].

o Interpret a category fibered in groupoids (CFG) in terms of pseudo-functors / lax 2-
functors. Conversely, associate a CFG to a groupoid-valued pseudo-functor. See [Vi, 3.1.2,
3.1.3].

e Give a few examples of CFGs, e.g. vector bundles, quotients by group actions, classifying
stacks (cf. [Vi, 3.2] and |G9, 2.1, 2.2]).

Fourth talk. Definition of Stacks.

e Discuss the category of descent data of CFGs and give the definition of stacks, as
explained in [Vi, 4.1.2, 4.1.3]. If we were dealing with categories fibered in sets, a stack
would be nothing but a sheaf, see [Vi, 3.4 and Prop. 4.9].

e Representable stacks and the 2-Yoneda lemma, [Vi, 3.6.1, 3.6.2]. The category C' is a
full sub-2-category of the category of stacks over C.

e Follow |[DeMu, 4]: ,S-Stacks“, representable 1-morphisms of stacks, quasi-separated
stacks, finally the definition of algebraic stacks. Note that in today’s terminology this
would be a Deligne-Mumford stack. Algebraic stacks usually refer to Artin stacks. Briefly
compare the definitions of Deligne-Mumford stacks and Artin stacks as in |G6| 2.3].

Fifth talk. Properties of Stacks. The reference here is [DeMu, 4].

e Explain how to transfer geometrical notions from the realm of schemes to algebraic
stacks, in particular ,,separated®, , quasi-compact®, ,,of finite type*, ,proper®.

e Define topological concepts for algebraic stacks: open and closed substacks, connected
and irreducible components.

e (ite the valuative criterion for separatedness and properness.
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Sixth talk. Stable curves as a Deligne-Mumford stack. As an application, we show that
the stack of stable curves of genus g is a Deligne-Mumford stack. Our main source is [Ed], but
confer also [DeMul.

e Theorem 2.1 in [Ed|

e Corollary 2.2 in [Ed]

e Section 3.1 in |[Ed]

e Explain shortly why M is proper, [Ed] section 3.2.
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