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Informal introduction
This article is on the conjecture of Birch and

Swinnerton-Dyer (BSD for short) for abelian surfaces,
originally formulated by Birch and Swinnerton-Dyer [1]
in the 1960s for elliptic curves over Q. Abelian sur-
faces are two-dimensional abelian varieties, and abelian
varieties are higher-dimensional analogues of elliptic
curves. An elliptic curve is an algebraic curve that car-
ries a group structure. This means that we can add two
points on the curve to get another point on the curve, and
this addition has similar properties as the standard addi-
tion. Elliptic curves and abelian varieties are important
in various contexts within mathematics, for example in
the proof of Fermat’s Last Theorem or in cryptography.

Using the numbers of points modulo each prime
number on an abelian variety A that is defined over the
rational numbers, one can construct a certain function,
the L-function of A. The BSD conjecture for A pro-
poses a surprising connection between the analytic be-
havior of the L-function of A and certain “global” in-
variants of A. These invariants include properties of the
group of rational points on A on the one hand and the
number of elements of the mysterious Shafarevich-Tate
group X(A) of A on the other hand. Since all other
quantities that occur in the conjecture can be computed
for given A, the conjecture can be expressed as “X(A)
is finite and has the expected number of elements”.

Birch and Swinnerton-Dyer originally formulated
their conjecture for elliptic curves. To prove this ver-
sion is one of the seven “Millennium Problems” of the
Clay Foundation.

For general elliptic curves and even more so for
higher-dimensional abelian varieties, the conjecture is
wide open. It is not even known that X(A) is always
finite. For so-called “modular” abelian varieties with
additional properties, some parts of the conjecture are
known, however, in particular the finiteness of X(A).
Every elliptic curve defined over the rational numbers is
modular, and so it was possible to verify the BSD con-
jecture for many individual elliptic curves.

In this article, we report on our project with the goal
to obtain the complete verification of the BSD conjec-
ture also for many modular abelian surfaces. Except in
cases that can be reduced to elliptic curves, this had not

been done so far even for a single abelian surface. For
the verification of the conjecture, we determined the size
of X(A). To this end, we used new ideas to generalize
and improve the methods that have been successful for
elliptic curves.

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) – Projektnummer STO 299/18-1, AOBJ:
667349.

State of the art
We now give more detailed and also more technical

description of the objects involved. The BSD conjecture
consists of two parts, which we will explain for the case
of an abelian variety A of dimension g over Q.

One attaches to A its L-function L(A, s), which is
defined by an Euler product over all prime numbers p.
If A is the Jacobian variety of a curve X of genus g, the
Euler factor at p for a prime p of good reduction is deter-
mined by the number of Fpn-points on the mod p reduc-
tion of X for n ≤ g. It follows from the Weil conjec-
tures for varieties over finite fields that the Euler product
converges for Re(s) > 3

2 to a holomorphic function. A
standard conjecture predicts that L(A, s) extends to an
entire function; this is known when A is modular, i.e.,
occurs as an isogeny factor of the Jacobian J0(N) of
one of the modular curves X0(N). By the Modularity
Theorem of Wiles and others [28, 22, 3], this is always
the case when A is an elliptic curve over Q (this is now
a special case of Serre’s Modularity Conjecture [11]).

We now introduce the relevant global invariants
of A. By the Mordell-Weil Theorem, the abelian group
A(Q) of rational points on A is finitely generated, so
it splits as A(Q) ∼= A(Q)tors ⊕ Zr, where A(Q)tors is
the finite torsion subgroup and r is a nonnegative in-
teger, the rank of A(Q). There is a natural positive
definite quadratic form ĥ on A(Q) ⊗Z R ∼= Rr, the
canonical height, turning A(Q)/A(Q)tors into a lattice
in a euclidean vector space. The squared covolume of
this lattice (equivalently, the determinant of the Gram
matrix of ĥ with respect to a lattice basis) is the regula-
tor RegA. The final global arithmetic invariant ofA that
we need is the Shafarevich-Tate group X(A). It can be
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defined as the localization kernel

X(A) = ker
(

H1(Q, A) →
⊕
v

H1(Qv, A)
)

in Galois cohomology; here Qv denotes the completion
of Q with respect to a place v and the direct sum is over
all places of Q. Geometrically, X(A) is the group of
equivalence classes of everywhere locally trivial A/Q-
torsors. This group is conjectured to be finite, but this is
completely open in general.

We also need some local invariants. To each
prime p, one associates the Tamagawa number cp(A);
this is the number of connected components of the spe-
cial fiber at p of the Néron model A/Z ofA and equals 1
for all primes of good reduction. Let (ω1, . . . , ωg) be the
pull-back to H0(A,Ω1) of a basis of the free Z-module
H0(A,Ω1) of rank g. Then the real period of A is the
volume of A(R) measured using |ω1 ∧ · · · ∧ ωg|:

ΩA =
∫
A(R) |ω1 ∧ · · · ∧ ωg|.

The weak BSD or BSD rank conjecture says that
L(A, s) has an analytic continuation to a neighborhood
of s = 1 and

ran := ords=1 L(A, s) = r .

The order of vanishing of L(A, s) at s = 1 is also called
the analytic rank of A.

The strong BSD conjecture says that in addition
X(A) is finite and

L∗(A, 1) := lim
s→1

(s− 1)−rL(A, s)

=
ΩA

∏
p cp(A) · RegA#X(A)

#A(Q)tors#A∨(Q)tors
.

HereA∨ is the dual abelian variety; it is isomorphic toA
when A is a Jacobian, or, more generally, when A is
principally polarized.

Since all the other invariants of A can (usually) be
computed at least numerically, we define the analytic
order of Sha to be

#X(A)an :=
L∗(A, 1)

ΩARegA
· #A(Q)tors#A

∨(Q)tors∏
p cp(A)

.

Assuming the BSD rank conjecture, strong BSD can
then be phrased as “X(A) is finite and #X(A) =
#X(A)an.”

Even the weak BSD conjecture for elliptic curves
over Q is wide open in general (this is the Clay Millen-
nium Problem mentioned above). However, the strong
BSD conjecture has been verified for many “small” el-
liptic curves; see below. In our project we verified the
strong BSD conjecture for the first time for a number of
abelian surfaces A, in a situation where it cannot be re-
duced to BSD for some elliptic curves. Concretely, this
means that A is absolutely simple.

Previously known results

Beside Serre’s Modularity Conjecture, the two big
theorems we use are the Gross–Zagier formula [9]
and the Euler system of Heegner points of Kolyvagin–
Logachev [12].

Assume that A/Q has real multiplication by an or-
der O of a totally real number field of degree g :=
dimA over Q, i.e. EndQ(A) = O. By Serre’s Modular-
ity Conjecture and a result of Ribet [18], this is equiva-
lent to the statement that A is an isogeny quotient of the
Jacobian J0(N) of the modular curve X0(N) for some
N (which we can take such that Ng equals the conduc-
tor of A), or that there is a newform f ∈ S2(Γ0(N),O)
with

L(A/Q, s) =
∏

σ:O↪→R
L(fσ, s);

in particular L(A/Q, s) is holomorphic on C. In the fol-
lowing, let A, g, O, f and N be as in this paragraph.

The Gross–Zagier formula relates the first deriva-
tive L′(f/K, 1) of the L-function of f base changed
to a certain imaginary quadratic field K, called Heeg-
ner field and defined below, to the height of a Heeg-
ner point yK ∈ J(K). This is a step towards the rank
conjecture because it says that ran(f/K) = 1 implies
r(A/K) ≥ dimA.

The Euler system of Kolyvagin–Logachev proves
that a GL2-type abelian variety A over Q with
ran(A/K) = dimA even satisfies r(A/K) = dimA,
r(A/Q) = ran(A/Q) and that X(A/Q) is finite. How-
ever, as it depends crucially on explicit open image the-
orems only available for elliptic curves in general, in
contrast to the case of dimA = 1, it does not give an
explicit finite support of X(A/Q). These theorems are
not available for dimA > 1 because the moduli space
of g-dimensional principally polarized abelian varieties
has dimension g(g+1)

2 > 1 for g > 1. In our work, we
therefore prove such open image theorems algorithmi-
cally only for a given modular abelian surface, and us-
ing this, we work out an explicit version of Kolyvagin–
Logachev.

Regarding rank > 1, there is no single elliptic curve
of analytic rank > 1 known for which we know that its
Shafarevich-Tate group is finite.

Exact verification for elliptic curves
In the case of elliptic curves, the various ingredi-

ents mentioned above have been worked out, made ex-
plicit and been improved to an extent that it was possi-
ble to verify the strong BSD conjecture for all elliptic
curves E over Q of rank ≤ 1 and conductor N < 5000;
see [8, 14, 15, 4, 13].

Exact verification for modular abelian
surfaces

We now specialize to the case g = 2, i.e., modular
abelian surfaces A/Q. We assume that A = J is a Jaco-
bian, in particular principally polarized, and absolutely
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simple. The latter is to exclude cases where one can re-
duce strong BSD to elliptic curves over number fields
(potentially larger than Q).

Strong BSD has been verified numerically and up to
squares for some Jacobians by van Bommel [25].

Our overall strategy is:

1. Classify the image of the residual Galois repre-
sentations ρp := ρf,p for almost all p: Show ex-
plicitly that almost all of them are irreducible and
have maximal image GL2(Fp)

det∈Fp .

2. For at least one Heegner field K, compute the
Heegner point yK ∈ J(K) (or rather 2yK ∈
JK(Q) or J(Q) if the L-rank is 0 or 1, respec-
tively). This gives the Heegner index IK =
AnnO(J(K)/OyK) as an O-ideal.

3. Compute a finite support of X(A/Q) with our
explicit version of the Heegner point Euler sys-
tem from the previous two steps.

4. For the finitely many remaining primes do one of
the following:

(a) If SL2(Fp) ⊆ im ρp and p is a prime of
good or multiplicative bad reduction, we
can use the GL2 Iwasawa Main Conjec-
ture [21, 20] to get the p-valuation of the
order of the p-Selmer group by computing
the p-adic L-function using overconvergent
modular symbols.

(b) Perform a p-descent; if ρp is reducible,
determine the characters constituting the
semisimplification ρssp and perform an
isogeny descent.

5. Compute the analytic order of X using modular
symbols if L(f, 1) ̸= 0 or from #X(AK/Q)an
and #X(A/K)an if the L-rank is 1. To compute
#X(A/K)an exactly, we use the Gross–Zagier
formula.

Our algorithms for 1 and 4 run very quickly. The
most time-consuming part of 2 is the computation of the
Mordell-Weil group. The last step 5 is very fast in the
analytic rank 0 case and a bit slower for rank g. In gen-
eral, the runtime is determined by the level N and the
discriminant of the chosen Heegner field(s).

We now describe these substeps in more detail:

Classifying the images of the residual Galois repre-
sentations

To prove X(J/Q)[p] = 0 for a prime ideal p of
O using the Euler system (see below), one assump-
tion we need to know is that the residual Galois rep-
resentation ρp : Gal(Q|Q) → AutO/p(J [p](Q)) is ir-
reducible or even has maximal image GL2(Fp)

det∈Fp .
The restriction det ∈ Fp comes from the fact that the
determinant of ρp is the mod-p cyclotomic character

χp : Gal(Q|Q) → F×
p satisfying σ(ζp) = ζ

χp(σ)
p for

a primitive p-th root of unity ζp. Another reason why
we have to have information on ρp is that we need to
know the characters constituting its semisimplification
if it is reducible when performing isogeny descents (see
below).

We first determine a small finite set S of primes such
that ρp is irreducible for p /∈ S: Assuming ρp reducible,
say ρssp ∼= εχp ⊕ ε−1 with a character ε : Gal(Q|Q) →
F×
p , we prove that the conductor d of ε satisfies d2 | N

if vp(N) ≤ 1, with a more complicated condition if
p2 | N . This implies that ε(Frobℓ)ordp ℓ = 1 for ℓ ∤ pN
with ordp ℓ the order of ℓ in F×

p . Therefore p divides the
gcd of the resultants

resZ[T ]

(
det(T − Frobℓ | TpJ), T ordp ℓ − 1

)
,

which is a non-zero integer which can be computed ex-
plicitly and very efficiently.

We can also exclude for all but finitely many p the
possibility that the projectivized image is contained in
PSL2(Fp) if deg(p) = 2.

Since ρp always contains an element of order > 5
in its image if p ≥ 7 (coming from the inertia subgroup
at p), its projectivized image in PSL2(Fp) is not excep-
tional, i.e., not contained in a subgroup isomorphic to
A4, S4, or A5.

By the classification of maximal subgroups of PSL2

over a finite field, if ρp for p ≥ 7 is irreducible,
not maximal and its projectivized image is not con-
tained in PSL2(Fp) if deg(p) = 2, i.e., strictly con-
tained in GL2(Fp)

det∈Fp , it is contained in the normal-
izer N(C) of a Cartan subgroup C. One can show that
the quadratic character given by modding out C from
the image is unramified outside the level N . Using the
Sturm bound and assuming that the newform f is non-
CM, i.e., there is no imaginary quadratic field K with
ap(f) = 0 for all p inert in K, one can bound the p
for which the image is contained in the normalizer of a
Cartan. Hence we have established an explicit and small
finite set of primes outside of which ρp is irreducible or
even maximal.

To treat the finitely many remaining primes p, we
compute ∆p(ℓ) = aℓ(f)

2−4ℓ ∈ Fp, the discriminant of
the Euler factor at p modulo p. If ∆p(ℓ) ̸= 0, ρp(Frobℓ)
has pairwise distinct eigenvalues, hence is contained in
a unique Cartan subgroup. The latter is split iff ∆p(ℓ) is
a square in F×

p . If we can find an ℓ for a given p such that
ρp(Frobℓ) is contained in a non-split Cartan subgroup,
the image is reducible.

In practice and in all cases we considered, this pro-
cedure gives the set of reducible primes. To verify that
ρp is reducible, we compute J [p](Q) as a Galois mod-
ule, see below.

Computing the Heegner point and Heegner index

Let K be an imaginary quadratic number fields in
which all primes dividing the level N are split (in par-
ticular, unramified). This is called the Heegner hypoth-
esis. It follows that there exists an ideal n of the ring
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of integers OK (this is not the endomorphism ring O
of A!) of K with OK/n ∼= Z/N . Choose an ideal
class [a] ∈ Pic(OK). Every such n as above defines
a CM point (OK , n, [a]) ∈ Y0(N)(K): It is the point
in the moduli space Y0(N) of elliptic curves with a
cyclic isogeny of degree N corresponding to the ellip-
tic curve C/a (a priori defined over C) and the isogeny
C/a → C/n−1a and is defined over the ring class field
HOK

of OK (which always contains the Hilbert class
field ofK and is equal to it if the order O is maximal) by
the theory of complex multiplication. Summing over all
[a] ∈ Pic(OK), we get a cycle of degree hOK

, the class
number of OK , on Y0(N). Subtracting hOK

[∞] with
the cusp ∞ ∈ X0(N)(Q) \Y0(N)(Q), we get a 0-cycle
on X0(N) defined over K. Its image in J0(N)(K)
under the Abel-Jacobi morphism is called the Heegner
point yK . Mapping yK to J under a modular parameter-
ization J0(N) → J gives the Heegner point on J . By
abuse of notation, we denote it by yK again.

The celebrated theorem of Gross–Zagier says that
the height of yK ∈ J(K) is non-zero if and only if the
order of vanishing of

L(f/K, s) = L(f, s)L(f ⊗ χK , s)

at s = 1 equals 1; here χK is the quadratic
Dirichlet character attached to K. By a theo-
rem of Waldspurger [26], for every newform f with
ords=1 L(f, s) ∈ {0, 1}, there exist infinitely many K
satisfying the Heegner hypothesis and the hypothesis on
the order of vanishing of L(f/K, s). Since a point is
non-torsion if and only if its canonical height is non-
zero, the Gross–Zagier formula establishes one inequal-
ity in the BSD rank conjecture: If L(A/Q, s) has order
of vanishing ran = g, then rkA(Q) ≥ g.

The Euler system of Kolyvagin (in the case of g =
1) and Kolyvagin-Logachev (for general real multiplica-
tion) not only proves the opposite inequality (and hence
equality of the analytic and algebraic rank), but also the
finiteness of the Shafarevich-Tate group:

Computing an explicit finite support of the
Shafarevich-Tate group

This is a purely theoretical consideration, combin-
ing the results of the computation of OyK ⊆ J(K) and
the p ⊂ O with ρp reducible.

It is crucial that the Heegner point y1 := yK ∈
J(K[1]) with K[1] = HOK

is the lowest level of a
whole system yn ∈ J(K[n]) with K[n] the ring class
field of the order OK,n := Z + nOK . They satisfy
a compatibility relation with respect to field norms in
which the Euler factors of f occur; hence the name “Eu-
ler system”.

Kolyvagin-Logachev define several constants Ci(p)
for finitely many i, and show that they are equal
to 0 for almost all p and fixed i, such that
p
∑

i Ci(p) Selp∞(J/Q) = 0. In particular, almost all
Selp(J/Q) are 0 and all Selp∞(J/Q) are finite. The
Ci(p) depend on the images of the Galois representa-
tions ρp∞ : Gal(Q|Q) → Aut(TpJ) and ρp, the annihi-

lator IK of J(K)/OyK as an O-module (the so-called
Heegner index), and the Tamagawa product c(J/K) =∏

v cv(J/K) of J (conjecturally, all primes dividing
c(J/K) also divide IK , so the latter would be redun-
dant). There are additional complications for p | 2
as one often considers the space of Galois modules A
where complex conjugation acts as +1 or −1, and A
does not decompose as A+ ⊕ A− in general if 2 | #A.
This is not a problem for us, since one can efficiently
compute Sel2(J/Q).

By making the argument of Kolyvagin-Logachev
explicit enough, we show that X(J/Q)[p] = 0 if p ∤
2IKc(J/K) and ρp is irreducible. On the way, we prove
that if ρp is irreducible, its image contains a non-trivial
homothety and one has H1(Q(J [p])|Q, J [p](Q)) = 0
using the classification of subgroups of PSL2(Fp).

One can define Euler systems more generally for p-
adic Galois representations ρ. In our case, this Galois
representation is TpJ . The existence of a non-trivial
Euler system together with “large image” results on ρ
implies the finiteness of the Selmer group of ρ, and un-
der some hypotheses one can even bound the size of the
Selmer group via the “index” of its first level, which is
the Heegner index in case of the Heegner point Euler
system of Kolyvagin-Logachev. However, only a few
Euler systems have been constructed, for example the
Euler system of Heegner points for modular abelian va-
rieties, the Euler system of elliptic units for CM elliptic
curves, and the Euler system of cyclotomic units for the
class group of cyclotomic field. Using the latter, one
can give a more elementary, albeit not necessarily easier
proof of the Main Conjecture of Iwasawa theory for cy-
clotomic extensions of Q compared with the first proof
of Mazur and Wiles, which used arithmetic geometry of
modular curves.

Computing the p-adic L-function and using the GL2

Iwasawa Main Conjecture

We wrote a Magma [2] implementation of locally
analytic distributions and distribution valued modu-
lar symbols together with their Hecke action. Build-
ing upon this, we implemented Greenberg’s improve-
ment [7] of the Pollack–Stevens algorithm [17] comput-
ing the p-adic L-function of a newform f of level divis-
ible exactly by p, i.e., bad multiplicative reduction, as
the evaluation at the path {∞ → 0} of the unique over-
convergent lift of the modular symbol attached to f . If p
does not divide the level, we compute the p-stabilization
of the modular symbol; this currently only works if
ap(f) ∈ O×

p .
Comparing with Magma’s implementation of the

p-adic L-function of an elliptic curve, our algorithm
outperforms Magma’s even for small p and preci-
sion O(pn), because the Magma implementation uses
the naive “Riemann sum” approach, which has com-
plexity exponential in log p. Our algorithm also runs
faster than the one implemented in SageMath [24],
which only works for primes of degree 1. We verified
that our algorithm produces the same output as Sage-
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Math with the same choice of a generator of the princi-
pal units using primes of degree 1.

In the cases where we use this, the p-adic L-function
has vanishing order 0 and constant term a p-adic unit,
and im(ρp∞) contains SL2(Zp), so by the GL2 Iwa-
sawa Main Conjecture, Selp(J/Q) = 0 and hence
X(J/Q)[p] = 0.

Performing isogeny descents

Let p | p be an ideal of the endomorphism ring
O. We compute J [p](Q) as a Gal(Q|Q)-module from a
complex approximation on the analytic Jacobian Cg/Λ,
where J [π](C) = 1

πΛ/Λ if p = (π) is principal. (This
is the case in all of our examples.) The computation
is sped up significantly if we use Julia/Oscar [5]. If ρp
is also reducible, we can compute the (1-dimensional)
characters constituting the semisimplification of ρp. We
perform an isogeny descent on them, i.e., we compute
an upper bound on the dimension of their Selmer groups
Selφ(Q, S) related to φ-eigenspaces of the unit group
and the class group of L = Q(φ), the number field ob-
tained by adjoining all values of φ. Here, S a finite set
of primes v containing those dividing the level N such
that cv(A/Q) is divisible by p. In all our examples with
p ∤ 2, the sum of the dimensions of the Selmer group
of φ and ψ is ≤ 1, hence X(J/Q)[p] = 0 since the
existence of the perfect alternating Cassels-Tate pairing
X(J/Q) ×X(J∨/Q) → Q/Z (note that X(J/Q) is
known to be finite) implies that the dimension is even.

As the computation of the unit group and the class
group is time-consuming even for moderately large val-
ues of #(O/p) and especially [Q(J [p]) : Q], we use it
only for small p and reducible ρp.

Computing the analytic order of the Shafarevich-
Tate group

Finally we have to compute #X(J/Q)an. This is
done by computing #X(J/K)an and #X(JK/Q)an
for a Heegner field K for J/Q, where JK is the
quadratic twist of J by K. To compute #X(J/K)an,
we use the Gross–Zagier formula [9] for gen-
eral abelian varieties of GL2-type over Q, using
the Heegner point we computed above. To de-
termine #X(JK/Q)an, we implemented a method
that computes L(JK/Q, 1)/ΩJK with the twisted
modular symbols of J/Q, as directly comput-
ing L(JK/Q, 1)/ΩJK tends to be too slow, because
the level of JK/Q is ND2

K with DK the discrim-
inant of K, which can be fairly large; note that
JK/Q has analytic rank 0. With both analytic ranks
at hand, we then use the equation #X(J/K)an =
#X(J/Q)an ·#X(JK/Q)an up to explicitly bounded
powers of 2 and Dokchitser’s code to compute the spe-
cial L-value L′′(J/Q, 1), van Bommel’s code to com-
pute the real period ΩJ and the Müller–Stoll code [16]
to compute canonical heights on and the regulator
RegJ/Q of a genus-2 Jacobian to compute the algebraic
part L′′(J/Q, 1)/(ΩJ RegJ/Q) of the special L-value

L∗(J/Q, 1). The remaining invariants needed to com-
pute X(J/Q)an, namely the Tamagawa numbers and
the torsion subgroup of J(Q), can be obtained through
existing Magma functions.

Verification of the conjecture for
Atkin-Lehner quotients of modular

curves
Using the above theory and algorithms, we managed

to verify strong BSD exactly for all of the 28 genus-2
quotients X0(N)/W ′(N) with W ′(N) a subgroup of
the Atkin-Lehner operators such that the Jacobian is ab-
solutely simple and of GL2-type over Q. We announced
this result in [10] with the article giving full details to be
published later.

Work in progress: more curves
There are curves of genus 2 whose Jacobians are

isogeny factors of J0(N) for some N , but which are
not (necessarily) Atkin-Lehner quotients of X0(N). We
find such curves in the LMFDB [23] as curves of con-
ductorN2 whose Jacobians are absolutely simple and of
GL2-type over Q. There are currently 97 such curves in
the LMFDB (including some of the Atkin-Lehner quo-
tients); these are curves with discriminant ≤ 106 (which
implies N ≤ 1000). Recently, Andrew Sutherland has
generated a much larger set of genus 2 curves that will
eventually become part of the database; we will then ap-
ply our algorithms also to the curves from this set whose
Jacobians are absolutely simple and of GL2-type.

We plan to produce more curves of genus 2 whose
Jacobians are isogeny factors of J0(N) for some N ≤
1000 (say) using the approach in [27] (which produces
numerical approximations to the curve up to a twist),
enhanced by using the Sturm bound and point counting
on the curve to determine the correct twist as sketched
in [6]. To these curves, we will then apply our algo-
rithms; we hope to be able to verify strong BSD for most
of them. The LMFDB lists 1195 pairs of Galois conju-
gate newforms of level ≤ 1000, so that we can expect to
find several hundred more examples in this way.

Our Magma code will be made available on
https://github.com/TimoKellerMath as
soon as we have finished our detailed article with more
examples.

A challenge
The recent preprint [19] gives a recipe to construct

absolutely simple modular abelian surfaces A/Q with
odd primes p dividing #X(A/Q). In principle, our
method can be used to verify strong BSD for them,
but as the level of the quadratic twist AD of A by the
quadratic character with discriminant D equals ND2,
the computations quickly become infeasible. For exam-
ple, all the 97 absolutely simple GL2-type abelian sur-
faces listed in the LMFDB have analytic order of X
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approximately 1, 2 or 4. So we pose as a challenge to
verify strong BSD for some A/Q with X(A/Q) not a
2-group!
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Schaefer, William A. Stein, Michael Stoll, and
Joseph L. Wetherell. Empirical evidence for the
Birch and Swinnerton-Dyer conjectures for mod-
ular Jacobians of genus 2 curves. Math. Comp.,
70(236):1675–1697, 2001.

[7] Matthew Greenberg. Lifting modular symbols of
non-critical slope. Israel J. Math., 161:141–155,
2007.

[8] Grigor Grigorov, Andrei Jorza, Stefan Patrikis,
William A. Stein, and Corina Tarniţǎ. Compu-
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